単位:mm

単位·/m

丸軸リニアガイド(鋳物ケース)

Round Type Linear Guides (Casting Iron)

GTC(ø20~ø30)(コマーシャル) GT(φ20~φ30) 〈精密級〉

丸軸リニアガイド(鋳物ケース)

GHC(φ20~φ30)(コマーシャル) GH(φ20~ φ30) 〈精密級〉

丸軸支持台(S45Cベース)

GC-R(ø16~ø30)(コマーシャル) G-R(φ16~φ30) 〈精密級〉

長

- 1. ガイドレールには高精度加工の容易な丸軸を使 用し、しかも安定した脚部構造の支持台が取付 けられているため、複雑な形状をもつ従来市販の ボールガイドに比べて安価であり、しかも長期に 百って高い精度を保持することができます.
- 2. 支持台をボルトで固定するだけで、高い精度の 直線案内構造が容易に得られますので大幅な組 付時間の短縮化を図ることができます.
- 3. 組付時の平行度や水平度調整が従来の異形状 ボール溝付ガイドに比較し、丸軸使用のためボー ル溝による鋼球の循環運動に拘束性が無く、は るかに容易となります.
- 4. 『図図図リニアガイドは従来の異形状ボール溝付 ガイドに比較し摩擦抵抗が少なく、安定したスムー ズな運転性能を得ることができます.
- 5. 高速運転時には 「MISTAIK リニアガイドは丸軸使 用のためボールの無限循環運動の追従性が良く 最適です.
- 6. 長尺物のガイドレールは各社とも継ぎ方式を採 用しておりますが、『Zaksリニアガイドは最も段 差がなく短時間で組付けられる機構になっており ます.
- 7. ガイドレールとベアリングには完全互換性を備 えてありますので、ハウジングとレールの間や機 械等に合マークをつける必要はありません. また 長尺物の継ぎ方式を採用した際も互換性があるた め運転性能に支障はきたしません.
- 8. 異物や塵埃等の多い環境で使用する場合に は、両シール付ガイドベアリングを標準としていま すので、グリースを封入しておけば給油の手間も 省くことができます.

種 類

®∇AIXリニアガイドはガイドレールに丸軸を使用し そのレールには最も安定した脚部構造に設計された 支持台が取付けられています. 一方ベアリングは剛 性の高い形状に設計された鋳鉄製ハウジングに組 込まれているので、高い精度の軽快な直線案内機 構を容易に得ることができます.

GTC<コマーシャル>シリーズ:

一般産業機械用コマーシャルリニアガイドで大幅な コストダウンを図り、レールの長さも標準規格化に より一般的に使用されますようシリーズ化いたしま した、ハウジングにはスキマ調整用のスリットが設 けられ、調整ボルトによって常にガタツキの無い 状態を得ることができます. 「両シール付が標準」

GHC<コマーシャル>シリーズ:

一般産業用低コストコマーシャルリニアガイドでハ ウジングは最もコンパクトな形状をもち、簡便に使 用できるシリーズです、「両シール付が標準」

GT<精密級>シリーズ:

広く一般に使用される型式のガイドユニットで、ハ ウジングにはスキマ調整用のスリットが設けられ、 調整ボルトによって常にガタツキが無いガイド状態 を得ることができます. 「両シール付が標準」

GH<精密級>シリーズ:

スキマ調整機構はありませんが、ハウジングの内 径が適正スキマを保ち得るように仕上げてありま す.したがってコンパクトな形状をもち.簡便に使 用できるシリーズです、「両シール付が標準」

精度規格とハメアイ

□Zalkリニアガイドの精度には、表35に示すよう な精密級とコマーシャル級の区別があります.

しかし表35の精度規格以外の精度を必要とする場 合にはご相談下さい.

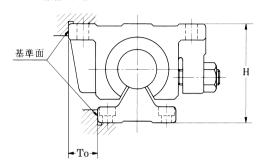


表35: 精度規格表

PT IIIIIPTITATE				
精 度 等 級	コマーシャル級	精密級		
型番	GTC, GHC	GT, GH		
記号	無記号	Р		
H寸法許容差	±0.2	±0.02		
To寸法許容差	±0.2	±0.025		

注1) H寸法許容差は、支持台が基準面に取付けら れた状態の値を示します.

注2) ベアリングと軸とのスキマは表36を標準とし ます.

200 - 120-1-1-1	— — · MII		
シリーズ区分	R	X	
GT, GTCシリーズ	±5	0	
GH, GHCシリーズ	5 ~ 15	10	

GT, GTCシリーズにはスキマ調整用ボルトが設け られており自由に調整できますが過大な予圧(プリ ロード)の附与はベアリングの運転性能や寿命に悪 影響をおよぼしますのでP259の表43の注意事項を チェックして下さい.

寿

GT. GHシリーズの定格走行寿命は、次式によって 計算されます.

$L_{10} = \left(\frac{C}{f_s \cdot P}\right)^3 -$	50(km)	式9
---	--------	----

L10: 定格走行寿命 C:基本動定格荷重 : 作用ラジアル荷重 Ν

表38参照 f。: 衝擊, 振動, 速度係数

取付け

基準面を利用して、同一平面上にリニアガイドを2本 並列に取付ける場合の一般的な方法を図39に示し

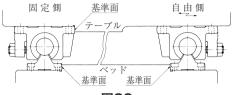
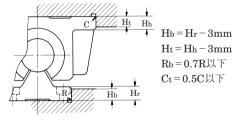



図39

〈取付け順序〉

- 1) 固定側支持台レールをベット基準面に押しあて 取付けボルトで本締めする.
- 2) 自由側支持台レールを固定側支持台レールとの 平行調整後取付けボルトで本締めする.
- 3) 固定側ハウジングをテーブル基準面に押しあて 取付けボルトで本締めする
- 4) 自由側ハウジングはテーブルに仮締めの状態と しておく.
- 5) ベットに取付けられた支持台レールとテーブル に取付けられたハウジングとの水平を保ちながら ゆっくりと組込みます。この際斜めに無理に組込 む事は絶対さけて下さい.
- 6)組込み終了後、手動で全ストロークを数回くり返 した後自由側ハウジングの取付けボルトを本締め し完了いたします.

〈取付け基準面の側面高さとすみ部の寸法〉

表3 / 単位:				立:mr
シリーズ	Hr	Hh	R	С
GT, GH, GTC, GHC-20	8	8	1.5	1
GT, GH, GTC, GHC-25	9	10	1.5	1
GT, GH, GTC, GHC-30	10	12	1.5	1

表38:衝擊,振動,速度係数

運転状況	$f_{\scriptscriptstyle S}$
衝撃や振動が無い場合で 往復速度V=300mm/sec以下	1~1.5
軽い衝撃や振動がある場合で 往復速度V=1000mm/sec以下	1.5~2.0
かなり大きい衝撃や振動がある場合で 往復速度V=1000mm/sec以上	2.0~4.0
-	

248