

リニアベアリングの作用荷重による変形量とヘルツ応力

図20のように1個の玉が軸と外筒間におかれ、 カPをうけた場合の変形量とヘルツ応力を求める式 は以下のようになります。

合計した総変形量:

$$\delta = 2.78 \times 10^{-4} P^{\frac{3}{2}} \left[\left(\frac{2}{R_1} + \frac{1}{R_2} \right)^{\frac{1}{2}} + \left(\frac{2}{R_1} - \frac{1}{R_2^2} \right)^{\frac{1}{2}} \right] \quad (mm) \cdots (1)$$
 ヘルツ応力:

軸側
$$\sigma_i = 857 \left(\frac{2}{R_i} + \frac{1}{R_o}\right)^{\frac{2}{3}} P^{\frac{1}{3}}$$
 (N/mn)···(2)

外筒側
$$\sigma_o = 857 \left(\frac{2}{R_1} + \frac{1}{R_0^2} \right)^{\frac{2}{3}} P^{\frac{1}{3}}$$
 (N/mm)···(3)

玉がある物体と接触しながら力Pの作用をうける と、ごく小さい接触面を生じます、このような接触面 は一般には図21に示すようなだ円形をしています が、(図では接触面を著しく誇張して画いている)こ の小さい面に生じた圧力で力Pが支えられます。こ の場合、接触面に生じる圧力は図示のようにだ円状 態に分布するが、その中で最大の圧力値すなわち 中央の圧力値をヘルツ応力といいます。一般の転 がり軸受の設計では、ヘルツ応力の最大値は2800 ~3000MPaにとられています.

リニアベアリングは通常の場合、4~6列の玉列 があり、リニアベアリングに外部から働く荷重Fと各 玉列に働く荷重Pとの間には**図22**のような関係があ ります。また、カタログに示されている基本動定格 荷重Cの値は、外荷重Fが1つの玉列の真上に作用 する場合(A)のものであるから、2つの玉列が振り分 け状態で外荷重を支えるように使用した場合(B)には Cの値は大きくなり、カタログ値のCに図22の荷重 比を乗じたものとしなくてはなりません。なお、各種 リニアベアリングの外荷重Fに対するδの値は、図 23から求められます.

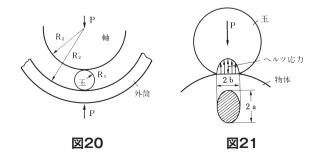
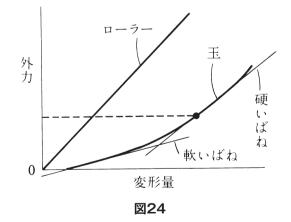


図23 (A)



図23-(B)

外荷重に対す		玉 列 数	
る玉列の位置	4列	5列	6列
玉列の位置 (A)	F Po F = Po	P ₁ P ₁ P ₁ F = 1.106Po	P ₁ P ₁ P ₁ P ₂ F = 1.354Po
玉列の位置 (B)	Po Po F = 1.414Po	Po Po F = 1.618Po	Po Po F = 1.732Po
荷重比	1.414	1.463	1.280


図22

予圧 (プリロード)

すべり軸受の中で軸が回転したり直線運動したり するためには、必ず若干のスキマが必要です。し かし、ボールやローラーのような転動体を組み込ん だ案内軸受では負のスキマすなわち、シメシロがつ いていても、軸は軽く運動することができます、この ようなことを「予圧をかける」といい、これが転がり 案内軸受の大きな特長の1つになっています。適切 な予圧をかけると、ガタツキは全く無くなるうえ、軸 受の剛性は増大します。すなわち、作用した外力に 対する変形量をかなり小さくすることができ、したがっ て、大きさの変動する外力が働いた場合でも、軸心 はほとんど移動することなく高精度を保持できます. その理由は図24に示すように、ボールの場合、外 力と変形量の関係は直線でなく(非線形ばね特性). 始め軟らかいばねであったものが、ある程度の外力 が働くと硬いばねに変化していくからです。一方、ロー ラーはほぼ直線形のばね特性をもつから、 予圧によ る剛性増大効果は小さくなります。

予圧はまた. かけ過ぎると走行性能に支障をきた し摩擦が増大して温度上昇を激しくさせるほか、軸 受寿命を急激に低下させますから、適切な予圧をか けることが肝要です. 一般に用いられる適切な予圧 荷重は、経験上軸受に作用する外力の1/3程度が よいとされています.

使用上の注意事項

□ZAIX製品をより効果的にご使用頂けますよう。 主な使用上のチェックポイントをあげてみました。設 計の際や、組立作業現場のチェックシートとしてご利 用下さい.

√モーメント荷重が作用しますとk-e線図より、お 解りの诵りベアリング寿命に重要な影響を与えま すので、ベアリングの選定には十分注意をし、2 個のベアリング間のスパンを設計上許される最大 限に取って下さい.

また必ずグリース潤滑を行って下さい.

√縦軸でベアリングを使用する場合には、ベアリ ングを1軸に2個使用して下さい。また軸とのハメ アイは緊密スキマを採用して下さい。

√ベアリングをハウジングに組込む際、作用荷重 方向に対してボール列を均等に振り分ける状態に 配置いたしますと寿命や運転性能に大変有利です。 √ベアリングと軸とのハメアイに過大な予圧(-10μm以上)が作用したり、ベアリング間の芯が 大きく狂いますと、ベアリングの寿命や運転性能 に悪影響を与えますので、軸を回転方向へ手動 で回し表18のC、又はC。の状態かどうかチェックし

√リニアベアリングは一般の転がり軸受に比べ、 外筒の肉厚が薄く、複雑な構造となっております ので、ハウジングへ組込む際は、ベアリングの両 端の止メ輪を直接叩かないよう図25に示すような 取付治具を使用して静かに圧入して下さい.

√軸をベアリングに挿入し組付ける際には、軸端 部をベアリングのリテーナや、止メ輪にぶつけな いよう。十分注意して芯を合わせ組込むようにし て下さい.

√リニアベアリング専用軸は、ちょうど一般の転 がり軸受の内輪に相当するもので、ベアリングの 性能を十分に発揮するためには数多くの諸要件を 満さなくてはなりませんので

「図図図図図 専用軸とリニア ベアリングを必ずペアーでご使用下さい。

表18

て下さい.

分類	軸の回転方向チェック事項	スキマ程度
C ₁	軸は手で回転方向にスムーズに廻る	0~+10 μ m
C_2	軸は手で回転方向にやや重いが廻る	$0\sim -10\mu\mathrm{m}$
C ₃	軸は手で回転方向に廻らない(NG)	-10μm以上

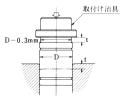


図25

49